Using the Engineering Design Process to Teach Service Learning

In honor of the current Winter Olympics, the 8th grade students at the Academy of Aerospace and Engineering decided to organize their own Academy Olympic games for the academy 7th graders to play. Our students stay one hour longer in school every day, and this extra period is the perfect time for hands on projects, STEM (science, technology, engineering, math) competitions, flying the flight simulator, and going outside to fly model aircraft or model rockets. Winter can be challenging, as we are generally stuck indoors. Therefore, the Academy Olympics gave the students a great day of fun learning right before we went on February break. For the 8th graders, this became a service project, as they were doing the work to provide a fun learning activity for the 7th graders. We have done other service projects, or service learning, in the academy in the past, and it can be challenging getting 25 or more middle schoolers to organize a project. As I started working with the 8th graders on this service project, it occurred to me that the NASA engineering design process we use for engineering design projects was the perfect framework to guide us in conducting this project.

The way we used the engineering design process for this service project worked as follows–the traditional project planning words are in bold, while the engineering design process steps are in underlined italics:

  • The 8th graders first planned the olympic events by doing some research, then brainstorming various events.
  • Next they organized the events by having each crew (group of about four students) design its event in detail. Each crew also presented its design to the other crews and everyone discussed ideas to improve each event.
  • The 8th graders then prepared their events by building or modeling what was needed to play or compete in the event, along with score sheets and other materials.
  • The day before the Academy Olympics, the 8th graders rehearsed their events by having one crew play (test) the other’s event, then switching, and having each crew provide feedback to the other so that they could refine it.
  • Finally, on the day of the Academy Olympics, each crew conducted its event by presenting it to the 7th graders.

The events were:

  1. A knowledge game like Jeopardy.
  2. A team game based on “escape the room” where students had to answer a series of riddles.
  3. A quick design challenge.
  4. A physical fitness challenge (pushups or situps, then planks).
  5. A team game where one person guides another blind-folded person through a “mine field.”
  6. A flying challenge on the flight simulator.

Each 7th grader could sign up for three of these events, and each event took ten minutes. Scores were accumulated by crew, and Crew 6 was the final winner of the Academy Olympic games. To assess the 8th graders in this project, I modified our Engineering Design Process (EDP) Rubric and made it a Service Project EDP Rubric.

Here are photos of the 7th graders competing as the 8th graders run the events–notice that there are no adults directing anything–the students were 100% in control, as Ms. Garavel and I just monitored for safety and timing:

IMG_8705DIMG_8705LIMG_8705MIMG_8705FIMG_8705NIMG_8705CIMG_8705EIMG_8705OIMG_8705IIMG_8705BIMG_8705HIMG_8705GIMG_8705K

Afterwards, the 7th graders gave the 8th graders feedback–they enjoyed the games very much, and they had some constructive suggestions. The plan now is for the 7th graders to  organize and conduct a similar event in the spring for the 8th graders to compete in, then possibly to extend it to a local elementary school. Let the games begin!

Advertisements

Integrating STEM Lessons

Students at the Academy of Aerospace and Engineering benefit from an integrated STEM (science, technology, engineering, math) curriculum everyday, but some days we are able to completely integrate these four disciplines. Today was such a day for the 7th graders. In 7th grade science, they have learned about simple machines, and compared the way an airplane climbs to an inclined plane. In aerospace science, they have learned how to fly an airplane and control it. In algebra they are learning how to find the line of best fit for a set of data points using linear regression, and to judge how well the data is correlated. They also have learned to use TI-84 graphing calculators and STEMPilot Edustation flight simulators, two pieces of learning technology we use weekly. Today’s assignment was for each crew (group of 4 students) to fly a flight simulator as if they were a flight test crew, carefully holding a steady airspeed as they climbed to an altitude of 3000 feet. On the way up, the crew members who were not flying were tasked with timing the climb and noting the elapsed time at every 500 feet of altitude. We got six sets of data from the six crews, then averaged the times to reach each 500-foot increment. Then we discussed how to do the linear regression, and the students computed a linear equation for the line of best fit and calculated the correlation coefficient, which was almost perfect. We discussed how the slope of this line was the climb rate, and we converted into units that pilots use, feet per minute. All this was done in about 40 minutes–an outstanding performance–and every student was involved. Here are photos of the students on the flight simulators and their data table with calculations:

 

IMG_4114 copyClimb Rate data