codrone

Teaching Persistence is Key to STEM Learning

Posted on

Students in STEM (science, technology, engineering, and math) programs often tackle difficult projects, and if they have short-term expectations, they can become discouraged–instead, they need to learn persistence. Students in the Academy of Aerospace and Engineering tackled several STEM projects recently and showed outstanding persistence in achieving results.

The 7th graders learned the basics of model rocketry in May by first taking and passing a safety test, then by building and launching Estes Alpha rockets–I covered this in a previous post. After that, the students have designed, built and launched original model rockets of their own design. They were required to make all the parts of the model rocket themselves–they designed and 3D printed nose cones, they hammered out metal to make engine retainer clips, they made fins, and they put it all together and measured the stability of their rockets. At each stage, things went wrong, but the students fixed the problems and pressed on. In the end, all six crews successfully launched and tested their model rockets. Here are photos of each crew with their uniquely designed rockets:

IMG_7069FIMG_7069EIMG_7069DIMG_7069CIMG_7069BIMG_7069A

The 8th graders also showed persistence in a few recent activities. First, one crew continued to refine the design of an electrically powered model airplane that was part of an American Institute of Aeronautics and Astronautics (AIAA) STEM challenge we did this winter. The goal was to have the airplane fly around a pole that supplied electricity to the airplane’s motor. At first, none of the airplanes even moved when power was applied–there was too much drag on the wheels and too much weight for the thrust available. The students refined their designs and finally got a couple airplanes to almost fly up into ground effect. We talked about what we learned and the importance of persistence. One crew took this to heart and kept working on their airplane during their free time. Finally, a couple weeks ago they achieved absolute success as their airplane took off and flew steadily around the pole at about one to two feet of altitude–the whole academy cheered as they did this, as we all knew how hard they had worked. Here are photos:

IMG_7067GIMG_7067HIMG_7067I

Another set of students have worked for weeks on an originally designed trebuchet. They worked on this as their project during one day per week when I allow students a creative period in the makerspace to create or make whatever they wish within some broad guidelines. The students designed and built a trebuchet, but then repeatedly failed to launch a softball successfully. They kept persisting, however, and finally achieved success right before the end of school, launching a softball on a great arc over about one hundred feet of distance. Here are photos (note: one student, Alek, is missing from the photos since he was at the National Invention Convention that day):

IMG_7067EIMG_7067F

Finally, the 8th graders have worked on the Codrone project where the coding of a small model aircraft (drone) took much patience and persistence, as described in an earlier post. For both the 7th and 8th grade classes in the academy, all the students have learned that big STEM projects require persistence to achieve results, but that the payoff in personal satisfaction makes it worth it, and they are connecting this persistence to other areas of their life.

 

Dynamic End of School Year Activities

Posted on

While many schools are winding down the school year with “fun” activities, videos, and other educationally light fare, the students at the Academy of Aerospace and Engineering are working on challenging and engaging activities right up to the end. The 7th graders, having just completed a lab comparing two types of model rockets, are starting an engineering project where each crew is designing their own original model rocket, then building and launching it as a test of the design. Students are ensuring the rocket is stable and are analyzing what forces will act on it. Here are some of the students launching their rockets during the lab while following all safety procedures laid out by the National Association of Rocketry:

IMG_3897IMG_3902IMG_3903IMG_3903A

The 8th graders are completing a coding and engineering project where they built and coded small drones, then flew them. These are Codrones made my Robolink, and the students had to learn everything to do this project through online tutorials. The Codrone uses an Arduino platform, and Robolink provides modified C++ code that the students can use, then tailor to make the drone do what they want. Essentially, this is a robotics activity. This was a challenging project, involving coding and flying. Here are some photos of the students working with Codrones:

IMG_3923IMG_3920IMG_3919IMG_3917IMG_3916IMG_3914

Another task by one crew is to follow up on our Sundial Project and demonstrate the winning design to the Superintendent so that he can approve it to be built outside our school. To prepare this demonstration, the students made a full-size prototype with floor tiles, then laid them out and tested the sundial’s accuracy – it was spot on, as the last photo shows where Sydney is the gnomon and Richard is pointing to the current time, 3:45PM, which is right where Sydney’s shadow falls:

IMG_3924IMG_3928IMG_3929

Finally, the 8th graders just finished the earth science unit on astronomy, so we are looking at life skills using Seven Habits of Highly Effective People by Dr. Stephen Covey. The students are studying what Covey said, then planning how to apply them in their lives now and in the near future in high school.  We are wrapping up an outstanding year, and giving the students these challenging activities makes for a good closure.