sundial

Dynamic End of School Year Activities

Posted on

While many schools are winding down the school year with “fun” activities, videos, and other educationally light fare, the students at the Academy of Aerospace and Engineering are working on challenging and engaging activities right up to the end. The 7th graders, having just completed a lab comparing two types of model rockets, are starting an engineering project where each crew is designing their own original model rocket, then building and launching it as a test of the design. Students are ensuring the rocket is stable and are analyzing what forces will act on it. Here are some of the students launching their rockets during the lab while following all safety procedures laid out by the National Association of Rocketry:

IMG_3897IMG_3902IMG_3903IMG_3903A

The 8th graders are completing a coding and engineering project where they built and coded small drones, then flew them. These are Codrones made my Robolink, and the students had to learn everything to do this project through online tutorials. The Codrone uses an Arduino platform, and Robolink provides modified C++ code that the students can use, then tailor to make the drone do what they want. Essentially, this is a robotics activity. This was a challenging project, involving coding and flying. Here are some photos of the students working with Codrones:

IMG_3923IMG_3920IMG_3919IMG_3917IMG_3916IMG_3914

Another task by one crew is to follow up on our Sundial Project and demonstrate the winning design to the Superintendent so that he can approve it to be built outside our school. To prepare this demonstration, the students made a full-size prototype with floor tiles, then laid them out and tested the sundial’s accuracy – it was spot on, as the last photo shows where Sydney is the gnomon and Richard is pointing to the current time, 3:45PM, which is right where Sydney’s shadow falls:

IMG_3924IMG_3928IMG_3929

Finally, the 8th graders just finished the earth science unit on astronomy, so we are looking at life skills using Seven Habits of Highly Effective People by Dr. Stephen Covey. The students are studying what Covey said, then planning how to apply them in their lives now and in the near future in high school.  We are wrapping up an outstanding year, and giving the students these challenging activities makes for a good closure.

Advertisements

Integrated STEM Project: Designing Sundials

Posted on

The 8th grade students at the Academy of Aerospace and Engineering have just completed an integrated STEM (science, technology, engineering and math) project where each crew (student groups of four to five students) designed a sundial, built a model of it, tested it, and presented it to Mr. Dias, our current Assistant Principal and next year’s Principal at John Wallace Middle School. The requirement given to the students was to design a sundial with an aerospace theme that could be built on the school grounds outside the academy. Mr. Dias saw all the designs presented, then he chose what he believed was the best design that would complement our school. The winning design, by Crew 4, uses a person as the gnomon (the part of the sundial that casts the shadow) and directs the person to stand on different places on the sundial, depending on the time of year, in order to accurately depict the time year-round.

So what makes this an “integrated project?” Integration means applying what is learned in one class to a problem in another class, or connecting concepts across two or more classes. We do this type of learning every day in the academy, and this project was especially integrated. The 8th graders have learned about the Solar System and how the Sun, Moon and planets move across the sky from an Earth observer’s point of view–they applied this knowledge to the sundial since the Sun changes its position in the sky not only hour to hour, but also day to day. The students used astronomy software to plot the Sun’s position every hour from 6:00AM to 6:00PM on both the summer and winter solstices and on the spring and fall equinoxes. They used this information to design the hour lines on their sundials. Drawing these lines required knowledge of circles, which is the unit in geometry we are studying–so students applied their knowledge of central angles and angular motion to design the sundial’s face with its hour lines. Half of the students are also studying air navigation, including latitude and longitude, so they applied that knowledge to the problem of designing the gnomon whose angle depends on latitude. Finally, the students applied what they have learned the past two years in the academy about the engineering design process and presentation skills. All of these connections made this a highly integrated project.

Here are photos of each crew with models of their sundials:

IMG_3837
Crew 1’s design would be on a pillar and is based on the academy logo with the gear as the sundial’s base and the red arrow as  the gnomon.
IMG_3836
Crew 2’s design would be on a pillar and has an aerospace theme with celestial objects marking each hour.
IMG_3832
Crew 3’s design uses the current academy sign, shaped like an aircraft tail, as the gnomon, then rocks in the ground would mark the hour lines.
IMG_3833
WINNING DESIGN – Crew 4’s design would be laid out in the ground with pavers and requires a person to stand as gnomon on the appropriate month to cast a shadow and give the time.
IMG_3834
Crew 5’s design is a large cement slab sundial in the ground with a gnomon shaped like an aircraft wing.
IMG_3835
Crew 6’s design would be on a pillar and has interchangeable disks for each season  so that the sundial is accurate year round.

Using Simple Models for Complex STEM Projects

Posted on

The 8th graders at the Academy of Aerospace and Engineering have been working on STEM (science, technology, engineering, math) project to design and build a prototype for a monumental sundial that we can display outside our facility. Each crew (student group of 4 to 5 students) is working on its own design, then all the crews will pitch their ideas to the administration. The winning design will be built outside as a class gift, once approved by school authorities.

Sundials can be made in many forms. The more accurate and all encompassing the design, the more complex the sundial becomes. Students have been researching and brainstorming ideas, and they have had many questions. To help them visualize how a sundial works, Ms. Garavel led the class in a project to build a simple, handheld paper sundial that we took outside and tested. First the students tried using the sundial horizontally, the way it is intended to be used. Then I challenged the students to put it on a vertical wall to see if the design could be altered to work there–and not just one vertical wall, but one facing south and one facing east. The students took up the challenge and quickly came up with logical changes that would make the sundial work in each situation.

Afterwards, we discussed this exercise as a class. The students understood how using a simple model like this could help in the early stage of any complex engineering project to give the designer a clear idea how something worked. They connected this exercise with something we had done earlier in the year when we copied the process the Wright Brothers had used by making simple airfoils that we tested in a wind tunnel before we made a more complex electric motor powered model airplane. We even discussed how this process could be useful outside of engineering, such as in a business that tests a product in a small focus group before committing a large amount of resources to produce it.

Here are photos of the students first making the paper sundials, then using them outside:

IMG_3768IMG_3770IMG_3771IMG_3767IMG_3769IMG_3775IMG_3774IMG_3776IMG_3778IMG_3779